
A COMPUTATIONALLY EFFICIENT ALGORITHM FOR SIMULTANEOUS
CHEMICAL AND PHASE EQUILIBRIUM CALCULATIONS

Stefan TSVETKOV and Roumiana P. STATEVA

Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria;
e-mail: thermod@bgearn.acad.bg

Received June 28, 1995
Accepted November 11, 1996

The paper recommends a particularly effective modification of the K-value approach to simultaneous
phase and chemical equilibrium. Three examples are presented – the esterification reaction of ethanol
with acetic acid, the synthesis of methanol, and the butylation of m-xylene. Discussed are the relia-
bility and computational efficiency of the new algorithm.
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At the root of most chemical process design problems, such as the distillation column
design or alternative separation systems and reactor design, lies the fundamental prob-
lem of chemical and phase equilibrium (CPE). Due to its significance in the realm of
industrial applications, extensive research has provided a number of proposed methods
for its solution.

Smith1 classifies chemical equilibrium formulations to be either stoichiometric or
non-stoichiometric. The stoichiometric formulations require the knowledge of stoi-
chiometric coefficients of linearly independent set of reactions and utilize the extent of
the reactions as independent variables. On the other hand, in the non-stoichiometric
formulations, elemental abundance constraints are used in the calculations.

Seider et al.2 provide a through review of the literature on solution methods of the
simultaneous CPE problem. Applicaiton of optimization methods began with the work
of White et al.3 and was further continued by Gautam and Seider4, George et. al.5,
Castillo and Grossmann6, Lantagne et al.7, Castier et al.8 to name a few.

The CPE problem can also be stated in an alternative formulation. The equilibrium
compositions and the number of phases of a system can be obtained by solving a set of
mass balance and phase and chemical equilibrium equations for specified components
and reactions. This is called the K-value method because distribution coefficients Ki

(e.g., for vapour/liquid equilibrium systems Ki ≡ yi/xi) are introduced.
Sanderson and Chien9 developed a K-value method designed for a single-phase or

multiphase systems with one or more linearly independent chemical reactions that cal-
culated the equilibrium composition of a mixture at a given temperature, pressure and

558 Tsvetkov, Stateva:

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



initial composition. In addition, a prior specification of possible reactions and their
equilibrium constants is required.

A new generalized algorithm for solving the simultaneous CPE in two-phase systems,
providing considerable improvements in the alternative K-value, have been quite recently
proposed by Xiao and co-workers10. Using effective K-values based on single-phase
compositions and a rearrangement of the chemical reaction and phase equilibrium cal-
culation loops proposed originally by Sanderson and Chien8, they reported accelerated
convergence of these methods when applied to an esterification reaction and several
electrolytic solution equilibria problems.

In general, the problem of chemical equilibrium computation can be posed as: Given
the initial composition of a system, calculate the composition, number of phases, and
reactions occurring in the final equilibrium state for a specified temperature and press-
ure. However, this type of calculation is too general and too complex to give much
insight into the effect of chemical reaction on phase equilibrium.

In this work an efficient modification of the K-value method introduced by Xiao and
co-workers10 is advocated. Firstly, the mathematical background of the simultaneous
CPE problem will be given and the algorithm of Xiao et al.10 will be presented briefly.
Then the new modification will be introduced and the analysis of its computational
efficiency will be carried out. Finally the computational experience of the authors with
this new algorithm will be discussed on the basis of three test examples.

THEORETICAL

Formulation of the Problem

The basic thermodynamic relation for a chemical equilibrium at T, P = const, assuming
that only one reaction occurs and derived regardless of the phase condition of the reac-
tants, is

∆G = ∆[νiµi
∗] ≡ ∑(

i = 1

N

νiµi
∗) = 0  . (1)

Introducing the expression for µi
∗ – the chemical potential of component i at equili-

brium, the following is obtained:

∑ 
i = 1

N

νi ln 
fi
f i

0 = − 

∑νiµi
0

i = 1

N

RT
 ≡ ln Kr  , (1a)

where Kr is the chemical equilibrium constant for the only reaction considered.
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If a system involving N components and the following M independent chemical reac-
tions is considered:

∑ 
i = 1

N

νij Ai = 0  ,       i = 1, 2, …;  j = 1, 2, …, M  , (2)

the material balance constraints for the reactions should be satisfied. However, the
moles of component i will not be conserved owing to chemical reactions. The final
amount F i

out of each component i is related to its initial amount F i
in through the extent

ξj  of the chemical reaction j taking place.
Thus, the material balance equations for the reactions are:

F i
out = F i

in + ∑ 
j = 1

M

νijξj  ,     i = 1, 2, …, N ;  j = 1, 2, …, M  . (3)

It should be noted that the stoichiometric coefficient νij  is positive if the component i is
a product of reaction j and negative if the component i is a reactant of reaction j.

In case of a simultaneous CPE for a two-phase vapour–liquid system involving N
components and M reactions, the equilibrium constant Krj for reaction j is defined by:

∏ 
i = 1

N

(xiPϕi
L)νij = ∏ 

i = 1

N

(yiPϕi
V)νij = Krj  ,     j = 1, 2…, M  . (4)

The constant Kri may be determined experimentally or calculated by:

Krj = exp 




−∆Gj
0

RT




  , (5)

where

∆Gj
0 = ∑ 

i = 1

N

νijGi
0  . (5a)

The phase equilibrium and the flash equations for a two-phase liquid–vapour (LV)
system are:

zi = 
F i

out

∑ 
k = 1

N

F i
out

  ,    i = 1, 2,…, N;   k = 1, 2,…, N (6)
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zi = αyi + (1 − α)xi  ,     i = 1, 2,…, N (7)

yi = Kixi  ,     i = 1, 2,…, N (8)

S(α) ≡ ∑ 
i

N (Ki − 1)zi

1 + α(Ki − 1) = 0  . (9)

The KZ Algorithm of Xiao et al.10

For a system with fixed T, P and initial feed composition, Eqs (3), (4), (6)–(9) con-
stitute the mathematical model of CPE. They are solved iteratively for the 4N + M + 1
unknowns:

F i
out     i = 1, 2,…, N

xi, yi, zi     i = 1, 2,…, N

ξj     j = 1, 2,…, N

and α.
Sanderson and Chien9 suggest an algorithm to solve the above non-linear equation

problem that searches for the extents ξj and F i
out ’s to satisfy Eqs (3) and (4) in an outer

loop, and for xi, yi, zi and α to satisfy Eqs (7)–(9) in an inner loop of the calculations.
Xiao et al.10 introduce a modification of the above algorithm. They argue that it is

efficient for an algorithm to reduce the number of K-value evaluations as much as
possible and suggest to move the entire flash loop to the outside and keep the inner
loop for the chemical equilibrium computations. They rearrange Eqs (3), (4), (7)–(9)
and substitute the expression for the equilibrium liquid mole fraction xi

xi = 
zi

1 + α(Ki − 1)  ,     i = 1, 2,…, N (10)

into Eq. (4):

∏ 
i = 1

N

(zi)νij = Kzj  ,     i = 1, 2,…, M  , (11)
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where

Kzj = Krj ∏ 
i = 1

N 



Pϕi

1 + α(Ki − 1)




−νij

  . (12)

In this formulation, effects of multiple phases and their non-ideality on the reaction
equilibria have been merged into a set of new parameters Kzj, j = 1, 2,…, M which
represent “effective” chemical equilibrium constants. Given these parameters, solving
Eqs (3), (6) and (11) is equivalent to the chemical equilibrium calculation of a single-
phase ideal mixture. Xiao et al.10 call their new algorithm the KZ algorithm, and, in
order to avoid division by zero and the non-linearity of division, they rewrite Eqs (11)
into the kinetic form:

Sj ≡ Kzj







∏ 
i = 1

N

(zi)−νij








νij<0

 − 






∏ 
i = 1

N

(zi)νij








νij>0

  ,     j = 1, 2,…, M (13a)

for Kzj  ≥ 1 and

Sj ≡ 






∏ 
i = 1

N

(zi)−νij








νij<0

 − 
1

Kzj
 






∏ 
i = 1

N

(zi)νij








νij>0

  ,     j = 1, 2,…, M

(13b)

for Kzj  < 1.
The material balance equations (Eqs (3)) are redefined to be:

SM+i ≡ F i
out = F i

in + ∑ 
j = 1

M

νij ξj  ,     i = 1, 2,…, N  . (14)

Equations (6), (13) and (14) are placed in the inner loop of the KZ algorithm. The
system of Eqs (13) and (14) is solved for the extents ξij and F i

out ’s (total number of the
iterative variables equals M + N) by a modified Marquardt method10.

The New Modification of the Chemical Equilibrium Computations

The present paper introduces a modification of the KZ algorithm in its part concerning
the chemical equilibrium calculations. As a result of this modification, the initial sys-
tem, Eqs (13) and (14) with M + N non-linear equations, is partitioned into two inde-
pendent parts, namely a system of M non-linear equations and N linear expressions.
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They are solved subsequently. The partitioning is realized introducing the following
transformations:

1. After taking the logarithm, Eq. (11) can be rewritten in the different form:

ln Kzj − ∑ 
i = 1

N

νij ln zi = 0  ,     j = 1, 2,…, M  . (15)

2. Substituting Eq. (6) into Eq. (15) yields:

ln Kzj − ∑ 
i = 1

N

νij 






 ln F i

out − ln 






∑ 
k = 1

N

F i
out














 = 0  ,     j = 1, 2,…, M  . (16)

3. Introducing Eq. (3) into Eq. (16), the following system of M non-linear equations
is obtained:

Φj (ξ1,ξ2,…,ξM) ≡ ∑ 
i = 1

N

νij 






 ln F i

out(ξ1,ξ2,…,ξM) − ln 






∑ 
k = 1

N

F i
out(ξ1,ξ2,…,ξM)














 −

− ln Kzj = 0  ,     j = 1, 2,…, M  . (17)

The unknown variables of the system are ξj, j = 1, 2,…, M, while the parameters Kzj can
be calculated directly from Eq. (12).

4. The linear functions (Eqs (3)) constitute the second independent part. F i
out, i = 1,

2,…, N can be calculated directly when ξj, j = 1, 2,…, M are known.

The Algorithm

The new modification of the chemical equilibrium computations, as given by Eqs (3)
and (17), is introduced in an algorithm for simultaneous CPE calculations. It follows
the organization, advocated by Xiao et al.10 – namely the phase equilibrium calculations
with constant K-values are performed in the outer loop and the inner loop is for chemi-
cal equilibrium computations. The algorithm is a part of the strategy for solving the
simultaneous CPE problem in its generalized form, i.e. the strategy for determining the
composition and number of phases occurring in the final equilibrium state of a multi-
component reacting system for a specified temperature and pressure. The strategy is
under development at present and will be advocated in a future communication. How-
ever, to ensure the objectivity of comparison of the effectiveness and efficiency of the
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two methods, all further developments and discussions will be kept into the framework
of the Xiao et al. paper10.

The present algorithm requires input information which includes the following para-
meters: temperature, pressure, initial mixture composition, number of components,
number of independent chemical reactions and their chemical equilibrium constants,
stoichiometric coefficients. The algorithm presents the case of a two-phase vapour–liquid
equilibrium in order to be in accordance with the original KZ algorithm. Its main steps
can be briefly summarized as follows:

1. Input T, P, zi, N, M, Krj, νij,      i = 1, 2,…, N; j = 1, 2,…, M .
2. The phase equilibrium calculations. They constitute the outer loop.
2a. Estimate Ki, i = 1, 2,…, N. The acceptable first estimate can be determined from

Wilson’s low pressure equation:

Ki = 
Pci

P
 



5.42 




1 − 

Tci

T








  ,     i = 1, 2,…, N  .

2b. Estimate α. The phase fraction is estimated automatically by the secant method
within the following boundaries:

αmin = 
1

1 − Kmax
 ≤ α ≤ αmax = 

1
1 − Kmin

as suggested by Whitson and Michelsen11.
2c. Find xi  from Eq. (10) and yi from Eq. (8).
2d. Calculate the fugacity coefficients ϕi for the components in the liquid and vapour

phases applying the corresponding thermodynamic models (in our case Eq. (21)).
3. The chemical equilibrium calculations. They constitute the inner loop.
3a. Find Kzj, j = 1, 2,…, M from Eq. (12).
3b. Solve Eq. (17) for ξj, j = 1, 2,…, M. The system is solved by Newton’s method.

The Jacobian of system (17) is known analytically:

∂Φj

∂ξl
 = ∑ 

i = 1

N

νij 














νil

F i
out − 

∑ 
k = 1

N

νkl

∑ 
k = 1

N

F k
out














  ,     l = 1, 2,…, M  . (18)

Upon convergence, new values for ξ1,ξ2,...,ξM are obtained.
4. Calculate F i

out from Eq. (3).
5. Calculate new values for z i

new from Eq. (6).
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6. Check whether Eq. (9) is satisfied.
If satisfied, continue with step 7, otherwise return to step 2b.
7. Calculate new values for Ki from the current values of fugacity coefficients ac-

cording to:

K i
new = 

ϕi
L

ϕi
V  ,     i = 1, 2,…, N  .

8. Check the following criterion:

∑ 
i

N 



K i
new − K i

old

K i
new





2

 ≤ 10−12  ,     i = 1, 2, …, N  .

If the criterion is satisfied, end the program, otherwise return to step 2a.
The algorithm has analogous structure in case of different types of phase equilibrium.

Comparison of the Present Algorithm with the KZ Algorithm

The system Φ (Eq. (17)) solved in the chemical equilibrium calculations of our algo-
rithm consists of M non-linear equations as compared to the system of Eqs (13) and
(14), solved by Xiao et al.10, which contains M + N non-linear equations. The corres-
ponding Jacobian in the former case is of dimension (M × M) while in the latter case –
(M + N) × (M + N).

It is a well-recognized fact that the CPU time required to solve any system of non-li-
near equations increases exponentially with increasing number of its variables12. The
present algorithm, in addition to the system Φ, calculates only N linear expressions which
practically do not consume any CPU time. Our algorithm thus leads to a considerable
decrease in the problem dimension and has a substantial impact on the CPU time con-
sumed by the program in the chemical equilibrium calculations. This positive effect is
especially pronounced in case of reacting systems with many components and not too
many reactions. For example, if there are two reactions (M = 2) and seven components
(N = 7), a “simplified” rough comparison of the CPU time required by the KZ algorithm
and that required by ours (TS) can be presented introducing an “efficiency ratio” ER:

ER = 
(CPU)KZ

(CPU)TS
 = 

exp (M + N)
exp (M)  = exp (N) = exp (7) ≈ 1 000  . (19)

Thus, in the part where the chemical equilibrium calculations are carried out, the
present algorithm is about 1 000 times more efficient than that of Xiao et al.10 provided
any preliminary information is not available. However, if there is some information, for
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example a good starting point for the corresponding algorithm, then the ER will be
reduced as shown in the test examples.

In our case an additional advantage arises from the possibility of using the Newton
method to solve system Φ (Eq. (17)). Xiao et al.10 use a modified Marquardt method to
solve Eqs (13) and (14) without giving any particular reasons why they have decided to
do that. Two things have to be taken into consideration: Firstly that any method from
the Levenberg–Marquardt class is used exclusively in the cases when the condition for
the positive definiteness of the Jacobian of the system to be solved is not satisfied, and
secondly that in such cases the Newton method does not converge. Therefore it might
be accepted with a high degree of certainty that Xiao et al. are forced to use that
method because the Jacobian of their system (Eqs (13) and (14)) demonstrates the
above characteristics.

If a more refined analysis of the efficiency of the two algorithms is carried out, then
the following should be considered as well: It is obvious that the set of non-linear
equations solved in the present case (Eqs (17)) differs in form from the set of non-linear
equations solved by Xiao et al. The structure of Eqs (17) could eventually result in:

a) exhibiting more complex solution space than the original set (e.g. changing the
number of its solutions) and

b) increasing the computational efforts and respectively the computational time to
find the true solution.

The first effect will not be observed since the transformation of Eq. (11) to Eq. (17),
namely taking the logarithm and then introducing on two subsequent steps two linear
functions (firstly Eq. (6) into Eq. (15) and secondly Eq. (3) into Eq. (16)), will not lead
to a change in the number of its solutions since the logarithm and the linear functions
are monotonous.

With regard to the numerical efforts and the computational time required to find the
true solution of Eqs (17) and Eqs (13) and (14), respectively, we present a detailed
comparison of the two algorithms on the basis of the number of multiplication opera-
tions required and carried out by a computer on a single iteration step from only one
known set of initial estimates. This approach is recommended in a number of books on
numerical methods as being better and more reliable than CPU time comparison (see
for example Fletcher12). The following must be taken into account: one division opera-
tion is equal approximately to 24 and one logarithm – to 52 multiplications.

The total number of multiplication operations on one iteration step consists of three
components:

a) Operations required to calculate the expressions constituting the corresponding
non-linear system,

b) operations required to calculate the Jacobian, corresponding to each of the systems
and,

c) operations required by the numerical method applied to find the true solution.
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Ad a) To calculate the corresponding expressions, constituting Eqs (13) and (14), the

KZ algorithm requires approximately: M + 2MN + M ∑
i = 1

N

  ∑ 
j = 1

M

| νij | multiplications and M

divisions or approximately M + 2MN + M ∑
i = 1

N

  ∑ 
j = 1

M

| νij | + 24M multiplications.

The TS algorithm requires approximately 2MN multiplications plus (N + 2) loga-
rithms or approximately 52(N + 2) + 2MN multiplications for calculating the ex-
pressions constituting Eq. (17).

Ad b) To calculate the Jacobian in the KZ algorithm approximately

MN 3 + 2MN 2 +  ∑
i = 1

N

  ∑ 
j = 1

M

| νij |  multiplications plus (M + N) divisions are required or ap-

proximately MN 3 + 2MN 2 +  ∑
i = 1

N

  ∑ 
j = 1

M

| νij | + 24(M + N)  multiplications.

To calculate the Jacobian in the TS algorithm, approximately M2N multiplications and
N divisions are required or approximately M2N + 24N multiplications.

Ad c) The modified Levenberg–Marquardt method10 requires on one iteration ap-
proximately: (M + N)4 + 2(M + N)2 multiplications plus (M + N) divisions or approxi-
mately (M + N)4 + 2(M + N)2 + 24(M + N) multiplications.

The Newton method requires approximately: M3 multiplications plus M divisions or
approximately M3 + 24M multiplications.

Two additional advantages of the present TS method, not reflected in the above com-
parison, have to be taken into account as well. The first arises from the fact that the
number of iterations required by the Levenberg–Marquardt method are always more
than or equal to that required by the Newton method to find the correct solution of a
given system of non-linear equations. The second is connected with the assumption of
using a good of set of starting points for an alogorithm to find the solution of a systems
of non-linear non-convex functions in the radius of convergence for the corresponding
numerical method (see Results and Discussion).

Thermodynamic Model

Different strategies can be utilized in the flash calculations depending on the thermody-
namic model. In the present paper, the Redlich–Kwong–Soave (RKS) cubic equation of
state (EOS) is used as the thermodynamic model of all phases. However, the mixing
rule is given by:

q1(βmix − ∑ 
i = 1

N

zi βij) + q2(βmix
2  − ∑ 

i = 1

N

zi βij
2) = 

gE∗

RT
 + ∑ 

i = 1

N

zi ln 




b
bij





(20)
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which is the modified Huron–Vidal second-order (MHV2) mixing rule. The recom-
mended values of q1 and q2 are –0.478 and –0.0047, as recommended by Dahl and
Michelsen13.

The expression for the fugacity coefficient derived from the MHV2 mixing rule is:

ln ϕi = ln 




RT
P(v − b)




 + 





1
v − b

 − 
β

v + b



 bii − ln 




v + b

v



 




∂(nβ)
∂ni



T,nj

  . (21)

Any appropriate model for the excess Gibbs energy gE∗
 can be used in connection

with the mixing rule. The present study implements the modified UNIFAC (ref.14).

RESULTS AND DISCUSSION

In this section, the proposed new algorithm is applied to three CPE problems, the first
two of which have been extensively discussed in the literature. The purpose is to test
the performance of the TS algorithm and compare its efficiency to that of the KZ algo-
rithm. The results will not be compared with published data of other authors since this
information concerns the reliability of the thermodynamic model rather than the effi-
ciency of the algorithm applied.

Example 1: Ethanol–Acetic Acid Reaction LV Equilibria

An equimolar mixture of ethanol and acetic acid reacts reversibly according to the
following esterification reaction10

EtOH + HAc ↔ EtAc + H2O  . (A)

This simultaneous CPE problem is studied at T = 355 K and P = 0.1013 MPa. The
MHV2 is used as the thermodynamic model of the liquid and vapour phases. The reac-
tion equilibrium constant is calculated as suggested by Stull et al.15.

The results obtained in this study are presented in Table I. Table II lists the number
of multiplication operations required by the KZ and TS algorithms on one iteration step
and from a known starting point. The TS algorithm requires approximately 3 times less
multiplication operations than the KZ algorithm when there is one reaction (M = 1) and
four components (N = 4).

Example 2: Methanol Synthesis

CO + 2 H2 ↔ CH3OH , (B)

CO2 + H2  ↔  CO + H2O . (C)
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The methanol synthesis reaction is studied at T = 473.15 K and P = 10.13 MPa. In
order to illustrate the performance of the new algorithm in CPE three-phase LLV cal-
culations, the synthesis reaction takes place in the presence of a large amount of an
inert heavy oil which, as suggested in refs9,16, is modelled as n-octadecane C18H38. The
values for the equilibrium constants of reaction (B) and (C) are calculated from the
expressions suggested by Bissett17 and Cherednichenko18 which determine Kri to be a
function of temperature as follows:

KrB = 9.740 . 10−5 exp 



21.225 + 

9 143.6
T

 − 7.492 ln T + 4.076 . 10−3T − 7.161 . 10−8T2

  ,

(22)

TABLE I
Equilibrium phase compositions (in mole fractions) for the esterification reaction (Eq. (A)) at T = 355 K
and P = 0.1013 MPa

Component Feed Liquid phase Vapour phase

        EtOH 0.5 0.1472 0.1910

        HAc 0.5 0.2673 0.0593

        EtAc – 0.2192 0.4555

        H2O – 0.3663 0.2941

Phase split and extent of reaction calculated by the TS algorithm: α = 0.477; ξ = 0.3318.

TABLE II
Number of multiplication operations required to find the true solution of the esterification problem
by the KZ and TS algorithms

Step   
Algorithm

KZ TS

           a    39 268

           b   240 100

           c   995  25

           Total 1 274 393
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KrC = exp 



13.148 − 

5 639.5
T

 − 1.077 ln T + 5.44 . 10−4T + 1.125 . 10−7T2 + 
49 170

T2




  .

(22a)

The thermodynamic model applied is the MHV2 model. The parameters between the
modified UNIFAC groups and the corresponding gases are those given by Dahl et al.19.

The obtained results are presented in Table III while the comparison of the number
of multiplication operations required by the KZ and TS algorithms on one iteration step
is given in Table IV. For one iteration step and from a known starting point, the TS
algorithm requires approximately 13 times less multiplication operations than the KZ
algorithm when there are two reactions (M = 2) and seven components (N = 7).

TABLE III
Equilibrium phase compositions (in mole fractions) for the methanol synthesis (Eqs (B), (C)) in the
presence of a heavy hydrocarbon C18H38 at T = 473.15 K and P = 10.13 MPa

Component Feed
Water-rich phase

(L1)
C18H38-rich phase

(L2)
Vapour phase

      CO 0.1071 traces  3 . 10–6  3 . 10–5

      H2 0.5286 0.0071 0.06  0.5328

      CO2 0.0571 traces traces traces

      CH3OH – 0.2871 0.1418 0.2275

      H2O 0.2143 0.7046 0.0070 0.1635

      CH4 0.0214 0.0011 0.0210 0.0752
      C18H38 0.0715 traces 0.7702 0.0010

Phase splits and extents of the reactions calculated by the TS algorithm: α1 = 0.4843; α2 = 0.3780;
ξ1 = 0.1642; ξ2 = 0.057.

TABLE IV
Number of multiplication operations required to find the correct solution for the methanol synthesis
problem by the KZ and TS algorithms

Step   
Algorithm

KZ TS

           a    98 496

           b 1 108 196

           c 8 235  56

           Total 9 441 748
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Example 3: m-Xylene Butylation

m-Xylene (MX) reacts preferentially with di-tert-butylbenzene (DTBB) or tert-butyl-
benzene (TBB) to produce tert-butyl-m-xylene (TBMX) and benzene (BZ), according
to the following reactions:

DTBB + MX  ↔  TBMX + TBB (D)

TBB + MX  ↔  TBMX + BZ  . (E)

These reactions are used to separate the close boiling m- and p-xylenes, because the
resulting butylated product can be easily removed due to its heavy molecular weight.
The values for the equilibrium constants of reactions (D) and (E) are assumed to be KrD = 0.6
and KrE = 0.16, as suggested by Venkataraman et al.20.

The results of the CPE calculations for T = 346 K and P = 6.87 kPa are presented in
Table V. The TS algorithm requires approximately 6.7 times less multiplication operations
than the KZ algorithm in case of two reactions (M = 2) and six components (N = 6).

CONCLUSIONS

The presented algorithm for simultaneous CPE calculations is general by nature and
can be used with any of the available and appropriate thermodynamic models. It is
robust and demonstrates good convergence qualities even if the initial estimates of the
required variables are not in a close proximity of the solution. In addition, it is ex-

TABLE V
Equilibrium phase compositions (in mole fractions) for the m-xylene butylation reactions (Eqs (D),
(E)) in the presence of p-xylene at T = 346 K and P = 6.87 kPa

Component Feed Liquid phase Vapour phase

        MX 0.3405 0.0008 0.0012

        PX 0.3839 0.3045 0.4890

        TBB 0.0586 0.0061 0.0044

        DTBB 0.2170 0.1252 0.0059

        TBMX – 0.5282 0.0899

        BZ – 0.0352 0.4096

Phase split and extents of the reactions calculated by the TS algorithm: α = 0.4305; ξ1 = 0.1431; ξ2 =
0.1964.
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tremely efficient from a computational point of view, especially in its chemical equili-
brium calculation part. The algorithm is completely reliable and can be successfully
implemented in a process simulator for modelling and design of processes charac-
terized with simultaneous chemical and phase equilibria of reacting strongly non-ideal
systems.

SYMBOLS

a cubic EOS mixture parameter, kPa m6 mol–2

Ai chemical species i
b van der Waals volume, m3 mol–1

f i0 fugacity of component i in reference state, kPa
fi fugacity of component i in mixture, kPa
F iin initial amount of species i, mol
F iout final amount of species i, mol
G Gibbs free energy, J
G i0 standard Gibbs free energy of formation of species i, J
∆G j0 standard Gibbs free energy change of reaction j, J
gE∗

excess Gibbs energy, J mol–1

Krj chemical equilibrium constant for reaction j, Eq. (4)
Kzj constant for reaction j defined by Eqs (11), (12)
Ki K-value for component i
Kmax the maximum K-value (among all) at equilibrium
Kmin the minimum K-value (among all) at equilibrium
M number of independent chemical reactions
n number of moles
N number of components in reacting system
P pressure, kPa
q1, q2 constants, Eq. (20)
R gas constant, kPa m3 mol–1 K–1

S(α) error function, Eq. (9)
T temperature, K
v mixture molar volume, m3 mol–1

xi mole fraction of species i in liquid phase
yi mole fraction of species i in vapour phase
zi mole fraction of species i in entire system
α phase split, Eqs (7), (9)
β = a/bRT equation of state mixture parameter, Eqs (20), (21)
ϕi fugacity coefficient, component i
Φ system of M equations, Eq. (17)
µi

∗ chemical potential of component i at equilibrium, J
µi

0 chemical potential of component i in reference state
νi stoichiometric coefficient of component i in single reaction
νij stoichiometric coefficient of component i in reaction j
ξj extent of reaction j, mol
Abbreviations
BZ benzene
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DTBB di-tert-butylbenzene
ER efficiency ratio, Eq. (19)
EtAc ethyl acetate
EtOH ethanol
HAc acetic acid
L liquid phase
LV liquid–vapour system
LLV liquid–liquid–vapour system
MX m-xylene
PX p-xylene
TBB tert-butylbenzene
TBMX tert-butyl-m-xylene
Superscripts
E excess
in initial
L liquid phase
new value of variable obtained at current iteration
old value of variable obtained at previous iteration
out final
V vapour phase
Subscripts
c critical value
i component index, i = 1, 2, …
j reaction index, j = 1, 2, …
ii corresponding to pure component
KZ corresponding to KZ algorithm, ref.10

max corresponding to maximum value
min corresponding to minimum value
mix corresponding to mixture
TS corresponding to present algorithm
1 corresponding to first liquid phase in LLV system
2 corresponding to second phase in LLV system
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